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Abstract 

A petroleum reservoir or mining deposit is an economic concentration of hydrocarbon or mineral 
resulting from a unique sequence of depositional events. This geological history is manifested 
through spatial trends in existing reservoir or deposit properties. Stratigraphic surface 
elevations, layer thickness, petrophysical properties, and mineral grades can all display trends in 
a single setting. These smooth variations must be reproduced in any legitimate model of 
heterogeneity. Conventional geostatistics will reproduce the sample data, its distribution, and the 
model of spatial correlation; however, there are often too few data to satisfactorily reproduce the 
trend. Geostatistical workflows must then be modified to explicitly account for the trend.  
 
The overall workflow for uncertainty characterization with a significant trend involves two major 
steps: (1) modeling the trend and (2) incorporating the trend into geostatistical operations. 
Numerous techniques and algorithms are available to construct trend models. There are also 
several options to consider for integrating trend models into geostatistical workflows. Industry 
and practitioners are becoming overwhelmed with the alternatives. There is a need to synthesize 
these methods and provide guidelines for implementation. This paper addresses this need. The 
procedures and implementation details for constructing trend models and integrating trends into 
geostatistical workflows are presented with various petroleum and mining examples. 

1. Introduction 

The spatial distribution of a geological variable is of dual character: partly structured and partly 
stochastic. The structured component is necessitated by a unique set of interpretable depositional 
events that originally concentrated the hydrocarbon or mineral; the stochastic component is due to 
random fluctuations in these geological formation processes. Actually, Georges Matheron 
invented the name and field of geostatistics on the basis of this observation:  
 

… even though mineralization is never so chaotic as to preclude all forms of forecasting, 
it is never regular enough to allow the use of a deterministic forecasting technique. This 
is why (at least, simply realistic) estimation must necessarily take into account both 
features – structure and randomness – inherent in any deposit. Since geologists stress the 
first of these two aspects, and statisticians stress the second, I proposed, over 15 years 
ago, the name geostatistics… (Journel, 1978).   

 
This notion of dual character can be represented analytically. Consider the random function Z(u) 
consisting of the set of random variables Z(uα) defined at each time and location uα within some 
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time and space domain A: { }Z( ) Z( ), Au u uα α= ∀ ∈ . If the random variable Z(uα) represents a 
geological variable, each one can be decomposed into a structured and random component: 
 
                                                            Z( ) m( ) r( )u u uα α α= +                                                       (1) 
 
where m is the structured component and r is the random component. The structured component 
m is referred to as the trend and the random component r is referred to as the residual. This 
analytical decomposition of a geological variable is intriguing in that (1) it is a simple 
mathematical signature of the birth of geostatistics, (2) it explains the spatial character of virtually 
any geological random variable encountered in petroleum and mining applications, and (3) it is at 
the heart of any modern approach for integrating trend models into geostatistical workflows.  
 
Formula (1) is indeed the basis for much of the work in this paper. We emphasize and explore the 
available methods for deriving the trend component m(uα). Implementation details, examples, 
and recommendations will enforce the understanding of the available techniques. Once the trend 
m(uα) is modeled, it is integrated into geostatistical operations. We also explore the available 
methods and options available for incorporating trend models into practical geostatistical 
workflows through descriptions and various examples. 
 

2. Trend Definition 

Virtually any geological attribute Z(uα) has a structured or trend component m(uα) of spatial 
variability since its concentration was guided within the existing reservoir or deposit according to 
a unique sequence of depositional events and structural deformations that are governed by the 
physical and geological laws of nature. From those laws, practitioners are able to rationalize and 
understand trends. For example, consider the two layer reservoir with a marine layer overlying an 
estuary layer in Figure 1. We expect higher porosities at the bottom of the reservoir since we 
understand that relative to the marine environment, the estuarine environment would have had 
higher saline content and correspondingly higher porosities. 
 
A trend m(uα) is defined as a gradually varying expectation of the variable Z(uα) over the time 
and/or space interval, A, discretized by uα. The following series of examples illustrates this 
definition. Let Z(uα) be the distribution of crude oil price ($US/barrel) on the NYMEX in the year 
2004 shown in Figure 2. Notice the gradual increase in crude oil price from approximately 
$35US/barrel in January to approximately $50US/barrel in December. This allows Z(uα) to be 
interpreted as the sum of a trend m(uα) and residual r(uα) component at all times uα within the 
year 2004. Now let Z(uα) be the log derived porosity profile in the elevation interval shown in 
Figure 3. Similarly, Z(uα) can be interpreted as the sum of a trend m(uα) and residual r(uα) 
component for all elevations uα within the logging interval. Finally, consider some type of 
revenue variable derived partly from both the crude oil prices in Figure 2 and the porosities in 
Figure 3. Here, we can interpret a time and space dependent trend toward higher revenues for 
times later in the 2004 year and locations lower in elevation. Practically therefore, a trend can be 
observed in 4 Dimensions (1D time + 3D space). In this work, only the 3D space domain is 
considered. 
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3. Modeling Principles 

Interpreting a trend is highly dependent on the scale or domain A. In Figure 2, the domain A 
consists of all the times uα in the year 2004; however, if we instead take A to be the month of 
June, we would actually interpret a decreasing crude oil price trend. In Figure 3, if A were to 
consist of just the elevations uα, in between the two horizontal red lines, we would interpret no 
trend at all. The interpretation clearly depends on the scale of consideration, that is, the limit 
values of uα in A. 
 
The form of the trend m(uα) must be reproduced at all locations uα in A in any realistic model of 
heterogeneity; however, data paucity makes this a significant challenge. Although it may be 
straightforward to interpret a trend from the data and geological principles, it may be difficult to 
satisfactorily reproduce this trend in estimation or simulation using the sample data alone. Figure 
4 shows a vertical string of grid blocks to be estimated from two log porosity profiles each a 
distance h away. From the porosity profiles and knowledge of a geological setting similar to that 
described in Figure 1, the trend m(uα) component can be inferred for the unestimated grid blocks. 
The form of this trend should be reproduced in estimation; however, there is no guarantee of this 
using just the two porosity profiles. In particular, if h is beyond the range of spatial correlation, 
the trend could be misrepresented. To enforce the correct form of m(uα), therefore, the 
practitioner is forced to explicitly model the trend at all locations uα within the domain A. 
 
The amount of variability modeled by the trend m(uα) is a subjective balance between 
deterministic knowledge and stochastic fluctuation. Of course, our deterministic understanding of 
the geology governing the formation of a reservoir or deposit is subjective. In all cases, the trend 
should model no more variability than what our deterministic understanding of the geological 
processes suggests; nevertheless, in practice, the trend is often over-fit and represents too much 
variability. Consider again the estimation scheme in Figure 4. Recall the trend m(uα) component 
based on our understanding of the depositional setting. There is an understandable geological 
rationale (see Figure 1) to expect an increasing porosity profile at the unestimated grid blocks. 
However, it is easy to let the neighboring porosity profiles over-influence a trend model without 
any additional deterministic knowledge. Incorporating too much variability in the trend 
dangerously leaves too little variability to the random fluctuations inherent in all earth sciences 
variables that are modeled by stochastic methods such as geostatistics. 
 
The subjective nature of trends has led to a surplus of available techniques for building a locally 
varying mean model m(uα). A continuum of trend modeling techniques is available. Each method 
has its own advantages and disadvantages, implementation details, and range of applicability. The 
implementation of each method varies according to the application. And certainly there are some 
techniques better suited to certain petroleum reservoir or mining deposit scenarios. There is a 
need for this information to be well documented and transparent to practitioners. 

4. Techniques and Guidelines 

A variety of trend modeling techniques ranging from the most conventional to the most modern 
are investigated in this work. With respect to this range, we investigate (1) hand mapping, (2) 
moving window averages, (3) inverse distance schemes, (4) simple kriging, (5) block kriging, (6) 
universal kriging, and (7) probability combination schemes in particular. All of the methods strive 
to model the smoothly varying expectation of the attribute of interest m(uα). For each technique, a 
description, example, and some implementation guidelines are illustrated. 
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4.1. Hand Mapping 
The most conventional approach to trend modeling is human interpretation or hand mapping and 
contouring. This process usually involves the digitization of hand-drawn contour lines. The 
contour lines are digitized on screen and the lines are converted to points. These points can be 
considered alone to explicitly produce the trend model or appended to the existing data to 
implicitly account for the trend in estimation. 
 
Although hand mapping techniques are flexible in allowing the pratictioner to model virtually any 
hint of smoothly varying spatial structure, there are a number of disadvantages. Most importantly, 
these methods are not repeatable and difficult to adjust when faced with new data or information. 
A significant amount of professional time and effort are also required to avoid creating artifacts, 
that is, ensuring a horizontal trend makes physical sense with respect to a vertical trend. 
 
Modern computing power has quickly made hand mapping techniques obsolete. Moreover, 
reservoirs or mines that use hand mapping techniques are more likely to simply use these maps 
for resource characterization than use them within a more complex trend modeling approach. 
There are few current examples of good hand mapping implementations. In virtually all 
situations, an automated method is preferred due to efficiency and repeatablility.  

4.2. Computer Mapping 
Contouring has become largely automated and increasingly sophisticated with the advancement 
of computing power and geostatistical research and development. Several methods are available 
to create smoothly varying maps of virtually any variable. The methods investigated in this paper 
are, in order of increasing complexity, moving window averages, inverse distance estimation, 
simple kriging, block ordinary kriging, and universal kriging for the mean. All of the methods are 
conditioned to all available sample data. 

Moving Window Averages 
The first method discussed is a moving average method. These methods average the attribute of 
interest within 1D intervals, 2D windows or 3D cubes that translate over the span of the reservoir 
or deposit. The attribute of interest can be a continuous or categorical variable. A geometric or 
power law average can be used for permeability. 
 
Figure 6 shows a categorical variable example in a petroleum reservoir scenario. There are 9 
facies types including sand. The proportion of sand is calculated within 15m vertical windows 
from the bottom to the top of the reservoir. The proportion is then plotted against the center of 
each elevation bin in Figure 6. The results suggest there is a significant tendency for higher sand 
proportions in the middle of the reservoir. 
 
Moving window averages are simple and effective trend modeling techniques. They can be 
applied at any dimension. The corresponding intervals, windows, or cubes can be made large 
and/or can overlap when there are too few data to obtain smoothly varying results. Moving 
window averages, however, do not apply any type of weighting scheme to the sample data, that 
is, all of the samples within the averaging limits receive the same weight. Therefore, these 
techniques may not be inappropriate in situations when data are clustered along well or drillhole 
strings. 

Inverse Distance 
Inverse distance is a grid estimation procedure that weights surrounding data inversely based on 
their distance from the estimation location. The grid can be in one, two, or three dimensions. 
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Samples that are further away from the estimation location receive less weight; the severity of the 
weighting is controlled by raising the inverse distance to a user-defined power. A search routine 
determines the number of data to retain. It is possible to incorporate simple anisotropy. 
 
Figure 7 shows a 2D aerial example using gold grade from a synthetically created mining 
database. The inverse distance method is applied to the vertical gold grade averages within each 
drillhole. The inverse distances are raised to a moderate power of 1.0 and the closest 50 data are 
retained to estimate each grid block. The results suggest there is a tendency for higher gold grade 
in the southern edge of the area. The sample data can be easily seen where they are reproduced at 
their locations.  
 
Inverse distance weighting is also a simple and effective trend modeling technique. A large 
search routine retaining many data and the calibration power give inverse distance schemes the 
flexibility to create smoothly varying maps in many practical situations. However, these methods 
do not explicitly account for the model of spatial correlation from variography and do not account 
for the redundancy between sample data. Inverse distance techniques then may not be appropriate 
when complex anisotropy or significant clustering exists. 

Simple Kriging 
Simple kriging is a weighted linear estimation technique that calculates the weighting scheme for 
surrounding data to minimize the expected error variance at each estimation location. This 
method simultaneously accounts for closeness of sample data to the estimation location and the 
redundancy of data in terms of the spatial correlation modeled by the variogram. The search for 
data is also done in terms of correlated distance. 
 
For the same vertically averaged conditioning data used for the inverse distance scheme, a simple 
kriging implementation is shown in Figure 8. The data locations are less obvious. An anisotropic 
variogram with a major northeast direction of continuity is used. The same number of data (50) is 
retained as in the inverse distance weighting scheme; however, different data are retained due to 
the anisotropic search routine. The same tendency for high gold grade in the southern portion of 
the area is apparent; however, the continuity of these high values is aligned in the northeast 
direction.  
 
Simple kriging is a very effective trend modeling technique. The method can be applied to any 
attribute of interest for virtually any petroleum or mining scenario. However, the results are 
sensitive to the assumption of stationarity, that is, only one mean value can be applied within the 
entire estimation area. 

Block Ordinary Kriging 
Ordinary kriging is an increasingly popular trend modeling technique. Ordinary kriging is a 
variation of simple kriging where the sum of the weights assigned to the data must equal 1.0. 
Essentially this requires the mean to be re-calculated at each estimation location separately. This 
is preferred for many practitioners since it relaxes the stationarity assumption. A block 
discretization and significant nugget effect are used to ensure the block estimates are smoothly 
varying. 
 
Figure 9 shows an example of ordinary kriging for building a 3D trend model. The sections 
shown are central plan view slices. A synthetic 3D sample dataset was created to condition 6 
different block ordinary kriging runs. Each run corresponds to a different nugget effect and range 
for an isotropic variogram. A 4 x 4 x 4 block discretization is used for each run. Although the 
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resulting maps do not seem to be very sensitive to the variogram parameters, the 45% nugget 
effect and 48 range case produces the smoothest variation. 
 
Ordinary kriging is a very effective and robust trend modeling technique. A large search routine 
retaining many data, a high block discretization, and high variogram nugget and range can 
effectively model any smooth variation in any attribute of interest for virtually any petroleum or 
mining scenario.  

Universal Kriging 
Universal kriging incorporates a functional form of the trend for each direction into kriging 
estimates. Usually, the functional form of the mean is input and the residuals at the data locations 
are estimated and added back to the mean. However, to use universal kriging for trend modeling, 
the mean model or trend can be estimated. The only additional requirement to implement 
universal kriging is the parameterization of the functional form of the mean. 
 
Figure 10 shows a simple example to illustrate the process. There are 3 data trending towards 
high grades in the X direction. Three different functional forms of the mean in the X direction are 
considered: (1) constant (top row), (2) linear (middle row), and quadratic (bottom row). The 
second and third column shows the estimated mean as well as the estimated attribute of interest 
using the locally varying mean model, respectively. It is important to use the entire dataset when 
using universal kriging; otherwise, artifacts may be created in the trend model. Figure 11 shows a 
universal kriging implementation using the same data as the ordinary kriging example. Here a 
25% nugget and 36 range isotropic variogram are used. A linear drift in the XY direction is 
parameterized. The corresponding trend does not result in such extreme trend values as that 
shown in Figure 9. 
 
It is not recommended to use universal kriging to estimate the trend model. The procedure is not 
as straightforward as the previous methods described and takes much longer since the global 
database needs to be retained to estimate the mean model at each grid block location. Moreover, 
these disadvantages are not associated with measurable improvement. 

4.3. Combining Lower Order Trends 
The general approach to trend modeling is to build one, two, or three lower dimensional trend 
models and then combine them into the desired 3D locally varying mean model. Any one of the 
previously discussed methods could be used to model a 2D or 1D trend model. There are some 
different methods available to combine lower order trends into a full 3D trend. These methods are 
referred to as probability combination schemes. Some different probability combination schemes 
are investigated and discussed in this section. 
 
Consider inferring the probability of some event A through its conditional probability P(A | B, C) 
to two separate events B and C. The A, B and C events are unconstrained as long as the 
conditional probabilities P(A), P(A | B) and P(A | C) can be evaluated. The challenge is how to 
combine the prior P(A) and  pre-posterior P(A | B) and P(A | C) conditional probabilities to infer 
the posterior P(A | B, C) probability. There are two common combination approaches: (1) full 
independence, which assumes B and C are fully independent and (2) permanence of ratios, which 
assumes B and C are incrementally conditionally independent. Appendix A develops and explains 
the analytical formulation of these two probability combination schemes. Formula (2) and (3) 
show the results for full independence and permanence of ratios, respectively. 
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⋅ ⋅ + ⋅ ⋅

⋅

=
⋅ ⋅

+

                 (3) 

 
where Ã is the complement of event A.  Consider the following event and probability definitions 
(also illustrated in Figure 12): 
 
 Event B is the probability of sand facies at a particular 2D horizontal grid cell location: 

 

S(x,y)P(A | B) p=  
 
 Event C is the probability of sand facies at a particular 1D vertical grid cell location: 

S(z)P(A | C) p=  
 
 Event A is the probability of sand facies at a particular 3D grid cell location: 

S S(x,y,z)P(A) p ; P(A | B,C) p= =  
 
where pS represents probability of sand and the x, y, z indices define the grid cell locations. The 
probability of an indicator variable is its mean; therefore, spatial pS probabilities are interpreted as 
locally varying means or trend models. Figure 12 also shows a pre-posterior pS(x,y) horizontal 
trend map and a pre-posterior pS(z) vertical trend curve. The challenge is then to combine the 
lower dimensional pS(x,y) and pS(z) pre-posterior probabilities (and prior probability pS) into a 3D 
posterior pS(x,y,z)  trend model suitable for simulation. 
 
The first example is the combination of a 2D horizontal and a 1D vertical sand facies trend into a 
3D trend model. The pre-posterior P(A | B) and P(A | C) probabilities are shown in Figure 13. 
P(A | B) was created using simple kriging and P(A | C) was created using a moving window 
average. Full independence and permanence of ratios is used for combination. Figures 14 and 15 
show the resulting full independence and permanence of ratios posterior probability models for a 
high probability case (Z=30m) and low probability case (Z=90m). Note that both seem to 
exaggerate the highs and lows, but the permanence of ratios hypothesis is not as severe.  
 
The full independence and permanence of ratios combination schemes in Equations (2) and (3) 
are for combining probabilities. It was straightforward to develop them within a facies trend 
modeling framework since the mean of an indicator is in fact a probability; however, relations (2) 
and (3) do not hold for units of continuous variables such as mineral grades or permeability. The 
challenge then is to extend the full independence and permanence of ratio combination schemes 
in (2) and (3) to include continuous variables.  
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We propose using the cumulative distribution function (cdf) of the continuous variable to get the 
prior and pre-posterior probabilities for combining into a posterior probability. The method is 
illustrated in Figure 16. Consider the following probability and event definitions for a continuous 
variable w: 
 
 Event B is the cdf value of w at a particular 2D horizontal grid cell location: 

 

 
 
 Event C is the cdf value of w at a particular 1D vertical grid cell location: 

 
 
 
 Event A is the cdf value of w at a particular 3D grid cell location: 

 
 
 
 
 
where F represents the cdf of the continuous w variable and the x, y, z indices define the grid cell 
locations. The cdf function F(w) is used to get the input prior and pre-posterior probabilities from 
original w units for combining into the posterior probability. The inverse cdf function F-1(w) is 
then used to get back the original w units of the posterior probability. By using cdf values, the full 
independence and permanence of ratios hypotheses can be used for trend modeling on continuous 
variables. 
 

5. Geostatistics with a Trend 

Once a locally varying mean or trend model is constructed using an appropriate technique, 
several options are then available for integrating the trend into a geostatistical workflow. 
Although this work does not emphasize this phase of handling trends, these options are briefly 
discussed along with some implementation details and guidelines. 

5.1. Stationarity 
Geostatistics is increasingly popular for mapping regionalized variables in the petroleum and 
mining industry. These tools provide the ability to construct multiple equally probable and 
geologically realistic models of heterogeneity that can honor several types of conditioning 
information. These models can be used to assess the uncertainty of various production 
performance variables. Conventional geostatistics (or any statistical inference), however, is 
limited by stationarity which is manifested from a limited set of sample data.  
 
The incorporation of trend modeling into geostatistical frameworks is challenging due to 
stationarity. Stationarity is not a characteristic or property of a reservoir or deposit nor is it a 
testable hypothesis. It is a decision made by the practitioner that amounts to assuming the 
geological phenomenon is homogeneous within some intermediate domain A′ within the full 
domain A. Consider a vector of N sample data from A, { }z( ) z( ), A, 1,..., Nu u uβ β β= ∀ ∈ = . 
Strict stationarity assumes invariance of the multivariate cumulative distribution function (cdf) 
under any translation h over the domain A: 
 

(x ,y)P(A | B) F(w )=

(z)P(A | C) F(w )=

(x,y,z)P(A) w ; P(A | B,C) F(w )= =
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                 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
1 N 1 N1 N 1 NZ ,...,Z Z ,...,ZF z ,..., z F z ,...,zu u u h u hu u u h u h h+ += + + ∀          (2) 

 
However, since only first and second order moments are needed in conventional (linear) 
geostatistics, only second order stationarity is required. In particular, this entails: 
 

1. The mean is independent of location, 
 

                                                       ( ){ }E Z m Aα α ′= ∀ ∈u u                                                  (3) 
 

2. The covariance is independent of location and depends only on the lag vector h, 
 
                       ( ) ( )( ) ( ) ( ) ( ){ } 2C Z ,Z C E Z Z m Aα α α ′= = ⋅ − ∀ ∈u u +h h u u+h u                   (4) 
 
The decision of stationarity is required for geostatistical inference. In this way, it is referred to as 
an export license. For instance, if we assume Z(u) is a Gaussian random function, we can fully 
define each Z(uα) with its mean and variance from the z(u) data vector by assuming only second 
order stationarity. 
 
Trends are non-stationarities and directly violate any decision of stationarity. Perhaps it is ironic 
that the creation of geostatistics based on Equation (1) suggests a trend component whereas the 
implementation of modern geostatistics in Equation (3) requires there to be no trend. Therefore, 
although geostatistical estimation and simulation methods are able to honor various types of 
conditioning information, some modifications to the classical workflows are required to 
adequately reproduce a trend. 
 
Just as there are several options to consider for building a trend model, there are also several 
options to consider for incorporating this trend model into a geostatistical framework. The options 
available and some associated implementation details and guidelines are now considered. The 
methods can be summarized into two categories: (1) a classic decomposition, and (2) a stepwise 
transformation. 

5.2. Classic Decomposition 
The most common approach to account for a trend in geostatistics is based on the decomposition 
in Formula (1). A preliminary step is modeling the trend m(uα) at all locations uα. The 
assumption of second order stationarity is then transferred to the residuals which are calculated at 
the N sample data locations as ( ) ( ) ( )r z mu u uβ β β= − . Multiple geostatistical realizations of the 
residuals are generated and added back to the trend model. The resulting models of heterogeneity 
honor the trend. 
 
There are two major deficiencies to this simple decomposition method (see Figure 17). The first 
is the inability to reproduce heteroscedastic features in the bivariate relationship between the 
residuals and the trend. Although the simple decomposition accounts for a non-stationary mean, it 
does not account for a non-stationary variance. The second deficiency is related to the constraint 
that the residual must be greater than or equal to –m. A simple addition does not ensure Z will be 
nonnegative at unsampled locations. Both deficiencies must be handled explicitly to ensure 
plausible results; a stepwise conditional transform of the original variable conditioned by the 
mean component was proposed for such situations. 
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5.3. Stepwise Transformation 
A stepwise transformation of the trend can be used to account for both heteroscedastic and 
constraint behavior (Leuangthong and Deutsch, 2004). One way to fix the problems in the 
classical decomposition is to transform to normal scores the variable of interest conditional to 
some mean windows: 

( ) { }1
RY G F R( ) | m( )β β β

− ⎡ ⎤= ⎣ ⎦u u u  

This amounts to subsetting of the variable of interest (the residual in this case) based on its 
corresponding trend value.  For instance, consider a subset of the trend data ranging from 0.5 to 
2.0 trend units (say, % grade or porosity).  Examination of the available data shows that there are 
53 data pairs of trend data and the corresponding residual that fall within this range.  Now apply 
the normal score transform to the 53 residual data.  This same procedure would be carried out for 
the next range of trend data (say 2.0 to 3.2 trend units), and so forth until all the residual data are 
transformed.  The resulting transformed residuals are independent of the trend component, and 
hence can be simulated independent of the trend.  Back transformation ensures the relationship 
between the trend and original residual data is reproduced.  As in the previous decomposition 
case, the simulated residuals can be added to the trend to yield simulated realizations of the 
attribute of interest. 
 
Consider a small reservoir example where we are interested in modeling porosity.  Figure 18 
shows the location of available wells and the vertical porosity trend that can be found in the wells.  
We can also see that overall, porosity tends to increase as we move from west to east.  Kriging 
was used to construct a 3D trend model and the areal trend becomes apparent (see Figure 
20(left)).  Using this trend model, the residual porosity data were then obtained by dissociating 
the trend from the original porosity data. Figure 21(left) reveals the resulting heteroscedastic and 
non-linear relationship between the trend and the residual.  Stepwise conditional transformation 
was performed and the transformed residuals and its relationship to the corresponding trend are 
shown in Figure 19.  Gaussian simulation of the residuals was then carried out; the simulated 
values back transformed; and the residuals added to the trend model.  Figure 20 shows a 
comparison of the trend model and one realization of porosity.  We can see an overall 
reproduction of the trend – the high porosity region is concentrated in the east, while the low 
porosity region is concentrated in the west.  Figure 21 shows good reproduction of the 
heteroscedastic relationship between the simulated residual and the trend model by using this 
approach. 
 
In the case of constraint features, the practitioner should consider transforming the original 
variable conditioned to its trend component.  This is especially relevant when the residual data are 
negative; transforming the original data ensures that any back transformed value will be non-
negative. 

5.4. Residual Variogram 
A common issue that arises in working with residuals in presence of a trend is variography.  Since 
the simulation we will perform will technically be that of the residuals, it is understood that we 
should model and use the variogram of the residuals in the simulation.  However, there are some 
problems with proceeding in this manner.  First, the common procedure is that the residual is 
modeled independent of the trend and the conventional normal score transform is applied.  The 
complex, dependent relationships we saw in the previous section are not considered, and so the 
residuals and the trend remain dependent.  We can see that this dependency has an impact on the 
covariance of the residuals (following from the decomposition in Equation 1): 
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r z m mrC ( ) C ( ) C ( ) 2C ( )= − −h h h h  
 
Secondly, even if one were to ignore this correlation between the trend and the residual, the 
residual variogram tends to be more discontinuous with higher nugget effect and shorter range.  
This is due to the imposed trend model; if the trend is too variable, that is, with well defined 
regions of small trends, then the trend captures too much of the variability of the phenomena.  
This leaves more of the stochastic features to be captured by the residual, and consequently 
makes it difficult to discern much structure in the residual variogram especially at short scales.  
The modeler should be careful to avoid capturing too much structure in the trend model; the focus 
should be to account only for large scale trends.  Small, regional trends should be left for the 
residual variable; if there are sufficient data to support such trends, then data conditioning and 
spatial continuity will dominate and these finer trends will be accounted. 
 
These two issues make variogram modeling in presence of a trend somewhat of an art.  One 
suggestion is to use the variogram of the original variable, especially in instances where inference 
of the residual variogram is a challenge, particularly at short scale distances.  If the trend truly 
captures only large scale features, then the variogram model associated to the trend is quite 
smooth and has limited impact at short scales.  Using the original variable variogram allows 
inference of a short scale structure that would otherwise be considered too unstructured for the 
residual. At larger scales, the original variable variogram can be modeled as stationary. 

6. Conclusion 

There are several alternatives to consider for building a trend model and honoring the trend 
within a geostatistical workflow. This work has described and in some cases implemented the 
most popular ones. There will always be a degree of subjectivity involved in modeling and 
integrating trends – different geological scenarios call for different trend modeling methods and 
implementation. However, this work provides options and guidelines for the practitioner.   
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Appendix A 

Consider the assessment of any unknown event A through its conditional or posterior probability 
P(A | B, C) given two events B and C where A, B, and C can be any event as long as the prior 
P(A) and pre-posterior P(A | B) and P(A | C) probabilities can be calculated. The two common 
approaches for combining the prior and pre-posterior probabilities are to assume that B and C are 
fully independent or to assume that B and C are incrementally conditionally independent. These 
are now developed. The A, B, C event notation is used for simplicity; however the derivation is 
the same for the facies probability pS framework. The following exact decomposition is the basis 
for the derivations: 
 

 
P(A,B,C) P(A) P(B | A) P(C | A,B)P(A | B,C)

P(B,C) P(B,C)
⋅ ⋅

= =  (0.1) 

  
The difficulty in the exact solution in (1) is the dependence of events B and C making the 
evaluation of P(C | A, B) and P(B, C) difficult. The first approach around this limitation is to 
assume B and C are fully independent, that is: 
 
 
  
 
Equation (0.1) is then simplified: 
  
 
 
 
 
 
 
Using Baye’s inversion: 

 
P(A | B) P(A | C)P(A | B,C)

P(A)
⋅

=  (0.2) 

 
Equation (0.2) represents the full independence probability combination scheme. The 3D sand 
facies trend model is calculated by simply scaling or multiplying the horizontal sand proportions 
by the vertical sand proportions and then standardizing or dividing by the global proportion. This 
simple relationship is popular among practitioners since it is straightforward to implement; 
however, it does not ensure the posterior probability P(A | B, C) ∈ [0, 1]. In practice, full 
independence exaggerates low and high probabilities. And of particular concern is the common 
occurrence of probabilities greater than 1. 
 
The second approach around the B, C dependence limitations in (0.1) is to assume B and C are 
conditionally independent. The Appendix contains an example intended to illustrate conditional 
independence within a trend modeling framework. If, conditional to the event A, B and C are 
independent: 
 
 
 

P(C | A,B) P(C | A)
P(B,C) P(B) P(C)

=
= ⋅

P(A) P(B | A) P(C | A)P(A | B,C)
P(B) P(C)

⋅ ⋅
=

⋅

P(B,C | A) P(B | A) P(C | A)= ⋅
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Equation (0.1) is then simplified: 
 

 
P(A) P(B | A) P(C | A)P(A | B,C)

P(B,C)
⋅ ⋅

=  (0.3) 

 
The conditional independence simplification does not remove P(B, C), which is difficult to 
evaluate. Also, equation (0.3) does not ensure the following posterior probability closure: 
 
 P(A | B,C) P(A | B,C) 1.0+ =  (0.4) 
 
From equation (0.3), equation (0.4) can be expanded: 
 
 P(A) P(B | A) P(C | A) P(A) P(B | A) P(C | A) P(B,C)⋅ ⋅ + ⋅ ⋅ =  (0.5) 
 
For (0.4) and (0.5) to be true, the posterior probability P(A | B, C) is standardized: 
 

 

P(A) P(B | A) P(C | A)P(A | B,C)
P(A) P(B | A) P(C | A) P(A) P(B | A) P(C | A)

P(A | B) P(A | C)
P(A)

P(A | B) P(A | C) P(A | B) P(A | C)
P(A) P(A)

⋅ ⋅
=

⋅ ⋅ + ⋅ ⋅

⋅

=
⋅ ⋅

+

 (0.6) 

   
The posterior probability P(A | B, C) can be reshaped: 
 

 
1 a x b c aP(A | B,C)

1 x a bc b a
− −

= = = =
+ +

 (0.7) 

with 
 
 
 
 
Equation (0.7) represents the permanence of ratios combination scheme. Specifically, 
x b c a

b a
− −

=  from (0.7) is referred to as a permanence of ratios. It is interpreted as the 

incremental contribution of C to A is the same regardless of B or B and C are incrementally 
conditionally independent. This assumption is less severe than the full independence model and 
results in legitimate probabilities. 

1 P(A) 1 P(A | B) 1 P(A | C) 1 P(A | B,C)a b c x
P(A) P(A | B) P(A | C) P(A | B,C)
− − − −

= = = =
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Figure 1 Higher porosity is expected with depth since a brine rich estuary environment existed before the 
marine environment. 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Crude oil prices ($US/barrel) show a clear trend (straight broken line) toward higher prices late in 
the 2004 year.  (Data source: NYMEX; Graph Source: TFC Commodity Charts) 
 
 
 



 

 104 - 15 

 
Figure 3 Porosity from a well log show a clear fining upwards trend. 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 The trend for a vertical string of reservoir blocks can be inferred from the neighboring porosity 
profiles and an understanding of a geological setting similar to Figure 1. 
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Figure 5 A hand contouring example from Surfer software showing the digitization of hand drawn contour 
lines. The hand contours are shown as the blue lines and the digitized points and the resulting contour lines 
from the points are shown as crosses and the black line, respectively. 
 

 
Figure 6 A 1D sand trend calculated from multiple vertical windows. The proportion of sand facies is 
calculated within each window and plotted against the center of each window. 
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Figure 7 A 2D aerial gold grade trend map created using inverse distance. 

 

 

 

 

 

 

 
Figure 8 A 2D aerial gold grade trend map created using simple kriging. 
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Figure 9 A 2D central plan view slice through a gold grade trend map created using block ordinary kriging. 

 

 
Figure 10 An illustration of trend and attribute estimation using universal kriging in a simple 3 data 
example. 
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Figure 11 2D central plan view slice through a gold grade trend map created using universal kriging. 
 
 
 
 
 
 
 
 

 
Figure 12 Pre-posterior and posterior probabilities represented as a Venn diagram for events A, B, and C 
(left) and represented as a facies trend model for events pS(x,y,z) (3D trend model), pS(x,y) (horizontal 
trend map), and pS(z) (vertical trend curve). 
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Figure 13 The pre-posterior probability of sand in the aerial plane P(A | B) is shown on the left and the pre-
posterior probability of sand in the vertical direction P(A | C) is shown on the right. 

 
 
 
 
 

 
 
Figure 14 A low value (left) and high value (right) plan view cross section through the posterior 
probability P(A | B, C) of sand model assuming full independence. 
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Figure 15  A low value (left) and high value (right) plan view cross section through the posterior 
probability P(A | B, C) of sand model using permanence of ratios. 
 
 
 
 
 
 
 
 
 

 
 
Figure 16 The full independence and permanence of ratios combination scheme for continuous variables. 
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Figure 17 Example of heteroscedastic variance of residuals (left) and constraint (right).  (Source: 
Leuangthong and Deutsch, 2004) 
 

 
Figure 18 Location map of clustered porosity data (left) and the corresponding vertical trend (right). 
(Source: Leuangthong and Deutsch, 2004) 
 

 
Figure 19 Histogram of stepwise conditionally transformed residuals and corresponding crossplot with the 
trend. (Source: Leuangthong and Deutsch, 2004) 
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Figure 20 Comparison of porosity trend (left) and one realization of porosity after back transformation of 
stepwise scores (right). (Source: Leuangthong and Deutsch, 2004) 
 
 
 
 
 
 
 
 
 

 
Figure 21 Original porosity trend and residual (left) shows non-linear, heteroscedastic features that are 
reproduced after applying the transform, simulating and back transforming the stepwise scores (right). 
(Source: Leuangthong and Deutsch, 2004) 
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